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Three-dimensional steady Rayleigh-Bénard convection in a vertical cylinder is investigated by numerical
simulation and bifurcation analysis. The complex pattern formation beyond the onset of the convection is
presented by a bifurcation diagram. The coexistence of multiple stable states is observed near the threshold of
the first bifurcation and two group symmetries are summarized for the corresponding primary branches. The
first stable target pattern originates through a subcritical bifurcation. A multiplicity of flow states for the
Rayleigh number of 14 200 is validated numerically in comparison with the experiment, and a four-spoke
pattern is observed.

DOI: 10.1103/PhysRevE.74.037302 PACS number�s�: 47.20.Ky, 47.20.Bp, 47.54.�r

Rayleigh-Bénard convection in a fluid layer heated from
below and cooled from above provides rich instances of
complex pattern formation and constitutes a high-
dimensional nonlinear system for transition to chaos and tur-
bulence. It has been a subject of numerous experimental and
theoretical investigations �1–4� for classifying and character-
izing the various convection patterns according to their spa-
tial and temporal behavior. The important applications are in,
e.g., meteorology, geophysics, astrophysics, crystal growth,
and industrial processes.

The occurrence of various convective patterns in a circu-
lar cylindrical cavity, partly coexisting simultaneously for the
same values of control parameters, was observed in many
experiments �4–9� and investigated by theoretical analyses
�2,10,11� and numerical simulations �12–18�. The primary
instabilities of the trivial conductive solution have been well
studied by linear analysis �12,14,15�. The critical Rayleigh
number is a function of the aspect ratio, and approaches the
limit value of 1708 with increasing aspect ratio. The fluid
motion that evolves for Rayleigh numbers beyond the critical
values is highly nonlinear and depends strongly on the aspect
ratio and the Prandtl number, where even weak nonlinear
solutions cannot predict the secondary bifurcation correctly
�14–16�. Hof et al. �9� considered a small aspect ratio ex-
periment which demonstrates that both axisymmetric and
asymmetric steady flows can exist for the same aspect ratio
of order unity. However, the various flow patterns in this
experiment are not completely verified by a numerical study
�18� with the same configuration. Because of the multiplicity
of steady states in this situation, it is difficult to predict the
pattern formation and determine all the stable solutions by
either experiment or direct numerical simulation.

Bifurcation theory �11� has long been a very helpful tool
in the analysis of the complex dynamics of nonlinear sys-
tems, such as the case of Rayleigh-Bénard convection. If
symmetries are present, group methods are also an important
assistance to the theoretical analysis. In order to capture all
the stable and unstable states of the system, the numerical
bifurcation method is facilitated with eigenvalue calculations
at given equilibrium states for stability analysis and path
following of solution branches to obtain the evolution of
flow patterns.

In this Brief Report we use numerical simulation and bi-
furcation analysis to study the multiplicity of steady states

for an aspect ratio �radius to height� of 2 and a Prandtl num-
ber of 6.7, in corresponding with the experiment in Ref. �9�.
Particular attention is paid to the symmetry and symmetry
breaking of the system.

We consider the thermal convection in a vertical cylindri-
cal cavity of aspect ratio a=R /H, where H is the height and
R is the radius of the cavity. A temperature difference �T
=Th−Tc is maintained between the bottom and top bound-
aries. The dimensionless equations in Boussinesq approxi-
mation explicitly read

� · u = 0, �1�

�tu + u · �u = − �p + �2u + �Ra/Pr��ẑ , �2�

�t� + u · �� = �1/Pr��2� , �3�

where u= �ur ,u� ,uz� is the velocity field in �r ,� ,z� cylindri-
cal coordinates. � denotes the dimensionless temperature
�T−Tc� / �Th−Tc�. The length, time, and velocity are scaled
by H, H2 /�, and � /H, respectively, where � is the kinematic
viscosity. The dimensionless parameters are the Prandtl num-
ber Pr=� /�, and the Rayleigh number Ra=g��TH3 / ����,
where � denotes the thermal diffusivity, g the gravity level, �
the thermal expansion coefficient. In correspondence with
the experiments without external sidewall forcing, the non-
slip boundary condition is prescribed at all the container
walls, the temperature is fixed at the top and bottom planes,
and the normal heat flux is zero along the lateral wall.

Due to the cylindrical geometry, the Boussinesq equations
�1�–�3� are invariant with respect to the O�2��Z2 symmetry
�19�, where the O�2� group contains the rotation symmetry
around the z axis and the reflection symmetry with respect to
the vertical planes containing this axis, and the Z2 group
corresponds to the reflection symmetry with respect to the
horizontal midplane. Symmetries have important conse-
quences on the nature of possible bifurcations, because the
image of a solution through a broken symmetry is also a
solution to the system.

The time-dependent solutions of Eqs. �1�–�3� are obtained
by using a second-order fractional-step method in three-
dimensional cylindrical coordinates, which is an improved
version of the algorithm in Refs. �20,21� with an additional
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pressure predictor step as in Ref. �22�. Based on this algo-
rithm, a first-order time-stepping formulation can be utilized
to calculate both stable and unstable steady solutions and
analyze their stability, as described in Refs. �16,23–25�. In
order to validate our codes, we calculate some typical thresh-
olds of the bifurcations for aspect ratio a=1. The convection
sets in with the axisymmetric mode at Racr=2256, which
agrees well with the linear stability result �Racr=2260
�13,14��. In Table I, we compare our values of the secondary
thresholds with those results in the previous literature.
Agreement on the axisymmetry-breaking bifurcation is also
obtained. In the present research, the values of the param-
eters are Pr=6.7 and a=2, close to those characteristic of the
experiment �9�. The spatial discretization uses typically 40
�64�20 mesh grid points in the �r ,� ,z� directions, which
is near that in Ref. �18�.

The scenario provided by the analysis of the steady solu-
tions is shown in the bifurcation diagram of Fig. 1. In this
figure the Nusselt number Nu, representing heat transfer
from the heated lower wall to the cooled upper wall, is
evaluated as a function of the Rayleigh number. In corre-
spondence with this diagram, we present in Fig. 2 all the
stable and unstable flow patterns of the branches bifurcating
from the trivial conductive solution, and in Table II the criti-
cal Rayleigh numbers for the onset of various flow patterns.
The corresponding patterns can be characterized by the Fou-
rier modes and their broken symmetries with regard to the
symmetries of the problem. The resulting subsymmetry can

be generalized by four groups of discrete transformations:
the horizontal midplane reflection 	, the reflection � with
respect to the vertical plane in which no azimuthal motion
exists, the rotation by 
 /m about this plane denoted by R
/m,
and the dihedral group Dm consisting of the repetitions of a
proper rotation by 2
 /m and the reflections in m planes
forming angles of 
 /m. For the sake of clarity only one
solution of each branch has been shown, because both the
patterns and their inverse equivalents can be deduced from
the broken reflection symmetry with respect to the horizontal
midplane PH, and the pitchfork bifurcation generates an in-
finite number of equivalent solutions parametrized by phase
when the O�2� symmetry is broken with azimuthal wave
number m�0.

First, we consider the primary bifurcations from the con-
ductive solution. For small Rayleigh numbers the system
without motion is stable, but loses stability to three-

TABLE I. Comparison of the thresholds of the second bifurca-
tion for a=1 with mesh 32�48�32.

Pr Ref. �15� Ref. �16� Present

1 �m=2� 3017 2969 2992

6.7 �m=1� 10134 12370 11950

FIG. 1. Bifurcation diagram for the Nusselt number vs Ra. Con-
tinuous lines: Stable states. Dashed lines: Unstable states.

FIG. 2. Flow patterns at Ra=2500: Contours of the vertical
velocity in the horizontal midplane �dashed lines correspond to
negative values�.

TABLE II. Critical Rayleigh numbers for the onset of flow
patterns.

Mode Racr Mode Racr Mode Racr Mode Racr

1 1836 3 1979 1b 2263 2+ 2350

2 1844 4 2045 0b 2314 0a+ 2113

0a 1856 5 2159 6 2395 0a++ 2245
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dimensional convection with an asymmetric mode �m=1�
through a supercritical pitchfork bifurcation at Ra=1836 �A
in Fig. 1�, which agrees well with the result of Racr=1832 by
linear stability analysis �14�. As shown in Fig. 2 by the con-
tours of vertical velocity in the plane PH, this flow pattern
consists of one main roll at the center of the cylinder with
two weaker half-circular rolls, where the symmetries pre-
served are � ,	R
 ,�	R
. Near the onset of convection, the
second mode �m=2� of the primary bifurcation appears soon
at Ra=1844 �B in Fig. 1�, which is also stable with symme-
tries of D2 ,	R
/2 ,	R
/2D2. The structure of the inner four
rolls is similar to the same mode for a=1 in Ref. �16�: the
fluid ascends in two opposite quadrants and descends in the
two others. Meanwhile, an additional four rolls form near the
sidewall due to the increasing aspect ratio. The third mode
�m=0a� is an axisymmetric mode with O�2� symmetry, but
it is unstable. This target pattern has two concentric circular
rolls, where the fluid descends in the middle of the radius
and rises near the axis and along the wall, respectively, as
shown in Fig. 2. All the following six modes of the primary
bifurcation are unstable including four high wave number
modes �from 3 to 6�, the axisymmetric mode �m=0b� with a
single circular roll, and another asymmetric mode �m=1b�
with five rolls. The patterns with high wave number m
=4,5 ,6 have similar flow structures including 2m rolls,
which are different from the low wave number cases with
additional weak rolls near the wall. If D1 denotes the bilat-
eral symmetry �, the symmetries of the primary branches
bifurcating from the conductive solution can be reduced to
two groups: O�2� symmetry for axisymmetric modes, and
symmetries of Dm ,	R
/m ,	R
/mDm for asymmetric modes.

Complex secondary bifurcations originate even near the
onset of convection. Above the threshold value of Ra
=2113 �J in Fig. 3�, the axisymmetric solution bifurcates to a
new asymmetric mode denoted by m=0a+, which is still un-
stable, and the O�2� symmetry is broken to the subsymme-
tries of � and R
 with two symmetric planes. This is D2
symmetry. The following bifurcation of the axisymmetric
branch is subcritical, the axisymmetric solution with two
concentric circular rolls becomes stable while another un-
stable asymmetric branch appears at Ra=2245 �K�. The new
unstable mode m=0a++ loses almost all the symmetries be-
sides the � symmetry with only one symmetric plane. The
flow structure of m=0a++ is almost the same as that of m
=0a+, but with a biased center which destroys one � sym-
metry. Above the threshold of the subcritical bifurcation,
stable axisymmetric and asymmetric solutions exist at the
same time, which is not far from the onset of convection.
Just after the subcritical bifurcation, a new supercritical bi-
furcation is observed at Ra=2350 �L� for the branch of m
=2. The eight-roll solution loses its stability and bifurcates to
a new stable solution with six main rolls, which breaks the 	
symmetry with respect to the horizontal midplane PH and
preserves the D2 symmetry.

When the Rayleigh number exceeds 2500, it is very dif-
ficult to follow all the branches because the new stable or
unstable solutions will emerge continuously from the high-
level bifurcations, and also from the primary bifurcation with
higher wave numbers. Only following the stable branches

and their corresponding bifurcations may be a realistic way
for future research.

In comparison with the experiment of flow state multiplic-
ity in Ref. �9�, the steady solutions at Ra=14 200 are calcu-
lated with different initial conditions. The steady target, par-
allel rolls, and spoke flow patterns are shown in Fig. 4. The
axisymmetric pattern with one circular roll is shown in Fig.
4�a�, where the fluid descends in the center and ascends
along the sidewall. The pattern of the inverse equivalent in
Ref. �9� is not given here. Note that this solution with O�2�
symmetry is on the axisymmetric branch of m=0b which is
unstable for small Rayleigh number, whereas the above flow
pattern of axisymmetric mode m=0a disappears here due to
a fold bifurcation. Figure 4�b� gives the two-roll pattern with
cold fluid falling along the center. Figures 4�c� and 4�d� show
the three-roll and four-roll patterns, which have better sym-
metry than the shadowgraph images in the experiment �9�.
The flow patterns in Figs. 4�b� and 4�d� are of D2 symmetry;
nevertheless Fig. 4�c� preserves � ,	R
 ,�	R
 symmetry. The

FIG. 3. Supercritical �a� and subcritical �b� bifurcations. Con-
tinuous lines: Stable states. Dashed lines: Unstable states.
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three-spoke pattern with cold fluid descending along the
spokes is D3 symmetric as shown in Fig. 4�e�. In addition to
these patterns, which have been observed in experiment �9�,
a pair of four-spoke patterns with D4 symmetry is found by
numerical analysis. As shown in Fig. 4�f�, the flow pattern
consists of four central spokes corresponding with the down-
ward motion while four upward-flowing jets exist near the

sidewall between the spokes. The reversed pattern can also
be observed with the same parameters.

In conclusion, three-dimensional steady Rayleigh-Bénard
convection with a=2 and Pr=6.7 has been investigated by
numerical bifurcation techniques; the parameters correspond
to the experiment of flow state multiplicity in Ref. �9�.
Twelve types of convective patterns have been observed near
the onset of convection when the Rayleigh number is less
than 2500. The complex pattern formation is presented
through bifurcation diagrams. The emerging flow corre-
sponds to an asymmetric solution �m=1� at Ra=1836 by a
supercritical pitchfork bifurcation. A multiplicity of steady
states appears soon due to a second stable branch �m=2� of
the primary bifurcation at Ra=1844. The symmetries of the
primary branches bifurcated from the static solution can be
reduced to two groups: O�2� symmetry for axisymmetric
modes and symmetries of Dm ,	R
/m ,	R
/mDm for asymmet-
ric modes. Above the threshold �Ra=2245� of subcritical bi-
furcation for the onset of stable target pattern, stable axisym-
metric and asymmetric solutions coexist close to the onset of
convection. Furthermore, multiple solutions for the Rayleigh
number of 14 200 are validated numerically, and a four-
spoke pattern is observed that has not been found in experi-
ment.
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FIG. 4. Multiplicity of flow states at Ra=14 200 in comparison
with the experiment �9�.
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